开关电源的前身是线性稳压电源。线性稳压电源的结构简单。其中的关键元件是稳压调整管,电源工作时检测输出电压,通过反馈电路对稳压调整管的基极电流进行负反馈控制。这样,当输入电压发生变化,或负载变化引起电源的输出电压变化时,就可以通过改变稳压调整管的管压降来使输出电压稳定。为了使稳压调整管可以发挥足够的调节作用,稳压调整管必须工作在线性放大状态,且保持一定的管压降。因此,这种电源被称为线性稳压电源[1]。
早期的开关电源的频率仅为几千赫,随着电子电力器材激磁性材料性能的不断改进,开关频率才得以提高。20世纪60年代末,垂直导电的高耐压、大电流的双极型电力晶体管(亦称巨型晶体管、BJT、GTR)的出现,使得采用高工作频率的开关电源得以问世[2]。但当开关频率达到10KHZ左右时,变压器、电感等磁性元件发出很刺耳的噪声,给工作和生产造成了很大的噪声污染。为了减小噪声,并进一步减小电源体积,在20世纪70年代,新型电力电子器件的发展给开关电源的发展提供了物质条件。开关频率终于突破了人耳听觉极限的20KHZ[3]。
反激式开关电源简单原理图及波形:
随着电子电力技术的发展,工作在高频的开关电源已经广泛应用于电气和电子设备的各个领域[4]。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不能受输入电压或者负载电流的影响[5]。
本课题的价值:
随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其简单、体积小巧等优势,广泛应用于小功率场合[6]。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳定电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域[7]。
传统的反激式开关电源一般由PWM控制芯片(如UC3842)[8]和功率开关管(频率较高时一般使用MOSFET)组成,PWM芯片控制环路设计复杂,容易造成系统工作不稳定,功率开关管优势需要外加驱动电路[9]。高效率与小型化在一定程度上是互相限制的,因为实现高效率会要求电路有相当的复杂度,大量的器件对小型化十分不利。在开关电源设计初期,采用的都是分立元件,集成度很低,大部分电路只能在PC版上实现,极大的限制了小型化实现的可能[10]。而且大量器件暴露在外,也影响了系统的稳定性。采用近年来,为了实现更高的效率和更小的体积,开关电源的工作频率有了很大的提高。高工作频率能够减小外围电感和电容的大小,从而减少系统的体积[11]。
目前,单片开关电源已经形成几十个系列、数百种产品。单片开关电源自问世以来便显示出强大的生命力,其作为一项颇具发展前景和影响力的新产品,引起了国外电源界的关注。单片开关电源具有高集成度、高性价比、最简外围电路、最佳性能指标等特点,现已成为开发中小功率开关电源、精密开关电源及开关电源模块的优选集成电路[12]。
高效反激式开关电源以其电路抗干扰、高效、稳定性好、成本低廉等许多优点,特别适合小功率电源以及各种电源适配器,具有较高的使用性[13]。随着电力电子技术的发展,工作在高频的开关电源已经广泛应用与电气和电子设备的各个领域[14]。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不受输入电压或者负载电流的影响[15]。
参考文献:
